Expert Perspectives: Best of HCV from EASL 2015
Saeed Hamid, MD
Alex Thompson, MD, PhD

This activity is supported by educational grants from AbbVie, Bristol-Myers Squibb, and Gilead Sciences.
Grazoprevir (GZR; MK-5172) + Elbasvir (EBR; MK-8742)

Future Treatment Option
New Fixed Dose Combination: GZR/EBR

- HCV NS3/4A inhibitor
- 100 mg once daily, oral

Grazoprevir (MK-5172)

- HCV NS5A inhibitor
- 50 mg once daily, oral

Elbasvir (MK-8742)

- Broad *in vitro* activity against most HCV genotypes
- Retains *in vitro* activity against many clinically relevant RAVs

Abstract G07

The Phase 3 C-EDGE Treatment-Naïve Study of a 12-Week Oral Regimen of Grazoprevir (GZR; MK-5172)/Elbasvir (EBR; MK-8742) in Patients With Chronic HCV GT 1, 4 or 6 Infection

S. Zeuzem et al
SVR 12: Full Analysis Set

Zeuzem et al., Abstract #G07, EASL 2015
Abstract O001

C-SALVAGE: Grazoprevir (GZR; MK-5172), Elbasvir (EBR; MK-8742) and Ribavirin (RBV) for Chronic HCV-Genotype 1 Infection After Failure of Direct Acting Antiviral (DAA) Therapy

X. Forns et al
GZR + EBR + RBV x 12 Weeks: SVR12 By Subgroup

<table>
<thead>
<tr>
<th>All Subjects</th>
<th>N = 79</th>
<th>SVR12</th>
<th>76</th>
<th>(96.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapse</td>
<td>3</td>
<td></td>
<td></td>
<td>(3.8%)</td>
</tr>
<tr>
<td>By Prior PI Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boceprevir</td>
<td>27/28</td>
<td>(96%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telaprevir</td>
<td>41/43</td>
<td>(95%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simeprevir</td>
<td>8/8</td>
<td>(100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Prior Failure Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On treatment failure</td>
<td>38/40</td>
<td>(95%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td>25/26</td>
<td>(96%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intolerance</td>
<td>13/13</td>
<td>(100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Time Since Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.1 year</td>
<td>22/24</td>
<td>(92%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1.1 year</td>
<td>46/46</td>
<td>(100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Presence of NS3 RAVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>43/43</td>
<td>(100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>31/34</td>
<td>(91%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1a</td>
<td>28/30</td>
<td>(93%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1b</td>
<td>48/49</td>
<td>(98%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Cirrhosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>32/34</td>
<td>(94%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>44/45</td>
<td>(98%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Viral Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤800,000 IU/mL</td>
<td>27/29</td>
<td>(93%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>800,000 IU/mL</td>
<td>49/50</td>
<td>(98%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Highly efficacious in patients who failed first generation protease inhibitor/PEG/RBV treatment

Forns et al., Abstract #O001, EASL 2015
Advanced Chronic Kidney Disease
Review of New Data
Abstract L-01

Safety of Ombitasvir/Paritaprevir/Ritonavir Plus Dasabuvir for Treating HCV GT 1 Infection in Patients With Severe Renal Impairment or End-Stage Renal Disease: The RUBY-1 Study

P. Pockros et al
Background/Objectives

- 12 weeks of OBV/PTV/r + DSV
 - GT 1 treatment-naïve
 - Included RBV for GT 1a
 - No RBV for GT 1b
 - CKD stage 4/5, including 60% on hemodialysis
 - Excluded cirrhotics
Summary

- Regimen has been well tolerated, including those on hemodialysis, with or without RBV
- Hemoglobin reductions were managed with monitoring and RBV dose interruption (8/13) and erythropoietin use (4/13)
- No virologic failures to date and all 10 subjects who reached PTW4

Pockros, et al. Abstract #LP-01, EASL 2015
Abstract LP-02

C-SURFER: Grazoprevir Plus Elbasvir in Treatment-naïve and Treatment-experienced Patients With HCV GT 1 Infection and Chronic Kidney Disease

D. Roth et al
Background/Objectives

• <1% of GZR and EBR is renally excreted
• This study evaluated GZR+EBR in HCV-infected patients with CrCl<30 mL/min, including patients on hemodialysis
 – GT 1 treatment-naïve or treatment-experienced
 – CKD stage 4/5
 – Included compensated cirrhotics

Roth, et al. Abstract #LP-02, EASL 2015
SVR12: GZR/EBR for 12 Weeks in GT1 Patients With Chronic Kidney Disease

- GZR/EBR was generally safe and well tolerated.

- Noncirrhotic, interferon-intolerant patient with HCV GT1b infection relapsed at FW12.

- Lost to follow-up (n = 2), n = 1 each for death, noncompliance, withdrawal by subject, and withdrawal by physician (owing to violent behavior).

- GZR/EBR was generally safe and well tolerated.
How Do We Currently Manage HCV-infected Patients With CKD Stage 4/5?

Are We Concerned With Using RBV For GT 1a Patients?
GT 3 Update
Abstract L-05

Sofosbuvir Plus Peg-IFN/RBV for 12 Weeks vs Sofosbuvir/RBV for 16 or 24 Weeks in Genotype 3 HCV-Infected Patients and Treatment-experienced Cirrhotic Patients With Genotype 2 HCV: The BOSON Study

G. Foster et al
Study Design

- Multicenter study, open-label, randomized (1:1:1) study at 80 sites in UK, Australia, USA, Canada, and New Zealand
- GT 2 patients: treatment experienced (TE) with cirrhosis
- GT 3 patients: TE or treatment naïve (TN), with or without cirrhosis
- Stratification
 - Cirrhosis
 - HCV Genotype
 - Prior HCV treatment
- Platelets ≥60,000 cells/mm³

Foster et al., Abstract #L-05, EASL 2015
Overall SVR12 (GT 2 and GT 3 Combined)

Error bars represent 95% confidence intervals.

Foster et al., Abstract #L-05, EASL 2015
SVR12: GT 2 vs GT 3

Error bars represent 95% confidence intervals.

Foster et al., Abstract #L-05, EASL 2015
SVR12 in GT 3 by Treatment History and Cirrhosis Status

- Treatment Naïve
 - **No Cirrhosis**: 58, 65, 68
 - **Cirrhosis**: 12, 18, 21

- Treatment Experienced
 - **No Cirrhosis**: 41, 44, 49
 - **Cirrhosis**: 17, 26, 30

- Treatment History
 - SOF + RBV 16 weeks
 - SOF + RBV 24 weeks
 - SOF + PEG/RBV 12 weeks

Foster et al., Abstract #L-05, EASL 2015
Abstract LP-05

Daclatasvir Plus Sofosbuvir With or Without Ribavirin in Patients With HCV Genotype 3 Infection: Interim Analysis of a French Multicenter Compassionate Use Program

C. Hezode et al
SVR4: DCV/SOF ± RBV in GT 3 Patients (12 vs 24 Weeks)

EASL Recommendation: GT 3 cirrhotics should receive SOF/DCV + RBV for 24 weeks

Hezode et al., Abstract #LP-05, EASL 2015
Is SOF + PEG/RBV for 12 Weeks Standard of Care for GT 3?
Can We Shorten Treatment Duration of SMV/SOF?
Ombitasvir/Paritaprevir/Ritonavir for Treatment of HCV Genotype 1B in Japanese Patients With or Without Cirrhosis: Results from GIFT-1

K Chayama et al
Background/Patient Population

- 2 DAA regimen: ombitasvir/paritaprevir/ritonavir
 - No interferon, ribavirin or dasabuvir
 - 12 week treatment
- Patient population
 - GT 1b-infected Japanese patients
 - Included cirrhotics
 - Treatment naïve or IFN-experienced patients

Chayama et al., Abstract #G13, EASL 2015
GIFT-I: Secondary Efficacy Results - SVR 12 Rates in ITT Subpopulations

Patients with SVR12 (%)

<table>
<thead>
<tr>
<th>Population</th>
<th>All</th>
<th>Naïve</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Efficacy</td>
<td>94.6</td>
<td>94.2</td>
<td>96.1</td>
</tr>
<tr>
<td>Patients without cirrhosis</td>
<td>106</td>
<td>131</td>
<td>73</td>
</tr>
<tr>
<td>Patients with compensated cirrhosis</td>
<td>112</td>
<td>139</td>
<td>76</td>
</tr>
</tbody>
</table>

Arm A
DB OBV/PTV/r

Arm B
OL OBV/PTV/r

Arm C
OL OBV/PTV/r

Error bars: 95% CI. DB, double-blind; OG LIGNENDE, open label; OBV/PTV/r, ombitasivir/partaprevir/ritonavir. Chayama et al., Abstract #G13, EASL 2015
Does This Study Have Applicability For Countries Other Than Japan
Can We Shorten Treatment Durations to <12 Weeks By Combining Potent DAAs from Different Classes?
Abstract O006

C-SWIFT: Grazoprevir/Elbasvir + Sofosbuvir in Cirrhotic and Noncirrhotic Treatment-naive Patients With Hepatitis C Virus GT 1 Infection, for Durations of 4, 6 or 8 Weeks and GT 3 Infection for Durations of 8 or 12 Weeks

F. Poordad et al
SVR12 in GT 1 Treatment-naïve Patients

- **Non-cirrhotic**
- **Cirrhotic**

<table>
<thead>
<tr>
<th>Time</th>
<th>Non-cirrhotic</th>
<th>Cirrhotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 weeks</td>
<td>33</td>
<td>87</td>
</tr>
<tr>
<td>6 weeks</td>
<td>10/30*</td>
<td>26/30</td>
</tr>
<tr>
<td>6 weeks</td>
<td>16/20</td>
<td>80</td>
</tr>
<tr>
<td>8 weeks</td>
<td>17/18</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Non-cirrhotic</th>
<th>Cirrhotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakthrough</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relapse</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Excluded*</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*Excluded patients who discontinued due to reasons other than virologic failure
† One of the 3 patients who discontinued had HCV G2 at discontinuation

Poordad et al., Abstract #O006, EASL 2015
SVR12 in GT 3 Treatment-naïve Patients

mITT analysis excluded patients who discontinued early due to reasons other than virologic failure

Poordad et al., Abstract #O006, EASL 2015
Are There Long-Term Consequences of Treating for Too Short?
Retreatment of Patients Who Failed 8 or 12 Weeks of Ledipasvir/Sofosbuvir-Based Regimens With Ledipasvir/Sofosbuvir for 24 Weeks

E. Lawitz et al
SVR12 by Subgroup

- Overall SVR12=71% (29/41)

All 11 patients without NS5A RAVs received 8 weeks of prior treatment

Lawitz et al., Abstract #O005, EASL 2015
How Do We Best Manage Patients with NS5A RAVs?

Should All Patients Have Baseline RAV Testing?

How Long Before Retreating a Patient with RAVs?
Advanced Cirrhosis/Post-OLT
Regimens With New Data

• SOLAR 2: SOF/LDV/RBV (G02; Manns, et al)
 - 12 vs 24 week treatment
 - GT 1 and GT 4 CPT B&C
 - SVR12: 88% (57/65) (12 wk arm) vs 89% (54/61) (24 wk arm)

• UK EAP: SOF + LDV or DCV ± RBV (O002; Foster, et al)
 - 12 week treatment
 - GT 1 and GT 3 CP-B and C patients (Mean MELD=11.9)
 - Virologically effective with >40% showing improvement in liver function
 - For patients <65 years if albumin is >35 g/L, improvement in liver function is more likely than harm
Regimens With New Data

• ALLY 1: DCV/SOF/RBV (L-08; Poordad, et al)
 - 12 week treatment
 - Any genotype enrolled but predominantly GT 1
 - Advanced cirrhosis (CPT A, B and C patients) and post-OLT
 - SVR12: CPT A=92% (11/12), CPT B=94% (30/32), CPT C=56% (9/16) and post-OLT=94% (50/53)

• C-SALT: GZR/EBR (O008; Jacobson, et al)
 - 12 week treatment
 - GT 1 CPT B patients (Mean MELD=9.9)
 - SVR12: 90% (27/30)
Advantages vs Disadvantages of Treating Advanced Cirrhosis vs Post-OLT
“EASL Recommendations on Treatment of Hepatitis C 2015” issued this week (J Hep). Is there any impact on current practice?

Drug:drug interaction concerns?

Community/primary care vs specialized care setting?
This activity is supported by educational grants from AbbVie, Bristol-Myers Squibb, and Gilead Sciences.